Fen-Edebiyat Fakültesi	MIDETERM EXAM I	
Name, Surname:	Department:	GRADE
Student No:	Course: Diff Equs	
Signature:	Exam Date: 7/11/2018	

Each problem is worth 25 points. Duration is 90 minutes.

1. Solve the equation $\left(\frac{y}{x}+6x\right)dx+(\ln x-2)dy=0, x>0.$

Solution: Let $M = \frac{y}{x} + 6x$, $N = \ln x - 2$. $\frac{\partial M}{\partial y} = \frac{1}{x} = \frac{\partial N}{\partial x}$ so the equation is exact.

$$\frac{\partial \phi}{\partial x} = M \implies \phi = \int \left(\frac{y}{x} + 6x\right) dx = y \ln x + 3x^2 + h(y).$$
$$\frac{\partial \phi}{\partial y} = N \implies \ln x + h'(y) = \ln x - 2 \implies h(y) = -2y$$

The solution is

$$y \ln x + 3x^2 - 2y = c \implies y = \frac{c - 3x^2}{\ln x - 2}$$

2. Given that $y_1(t) = t^2$ is a solution of $t^2y'' - 4ty' + 6y = 0$, t > 0, use the method of reduction of order to find a second solution.

Solution: Plug $y = vt^2$ into the equation to get $v''t^4 = 0$, that is v'' = 0, that is $v = c_1t + c_2$, or $y = c_1t^3 + c_2t^2$. The second solution can be taken as $y_2 = t^3$.

3. Find the solution of the initial value problem y''+2y'+5y=0, , y(0) = 0, y'(0) = 2. Plot the solution in the y - t plane.

Solution: $\Delta = 4 - 20 = -16$ so the roots of the characteristic equation are $r_{1,2} = -1 \pm 2i$. The general solution is $y = e^{-t} (c_1 \cos 2t + c_2 \sin 2t)$. Using the initial condition, we get $y = e^{-t} \sin 2t$. The graph of the function passes from (0,0), is increasing at (0,0), oscillates and decays to the *t*-axis.

4. Solve the initial value problem $\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$, x > 0, y(1) = 2. (Hint use the change of variables: v = y/x.)

Solution:

$$y = vx \implies \frac{dy}{dx} = x\frac{dv}{dx} + v = \frac{x}{y} + \frac{y}{x} = \frac{1}{v} + v$$

Hence

$$x\frac{dv}{dx} = \frac{1}{v} \implies vdv = dx/x \implies \frac{v^2}{2} = \ln x + c \implies (y/x)^2 = 2(\ln x + c)$$

Using the initial condition, we get c = 2. The solution is $y^2 = 2x^2 (\ln x + 2)$